Affine Robinson-Schensted correspondence in Kazhdan-Lusztig theory

Michael Chmutov Joel Lewis Pavlo Pylyavskyy

AMS Meeting #1121 Brunswick, ME

Spetember 24, 2016

• Left-hand side = affine symmetric group

Right-hand side

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n\}$
- Right-hand side

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{ w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n \}$
 - Non-extended: $W = \widehat{S}_n = \left\{ w \in \widetilde{S}_n \mid \sum_{i=1}^n w(i) i = 0 \right\}$
- Right-hand side

$$W \hookrightarrow \Omega_{dom}$$

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{ w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n \}$
 - Non-extended: $W = \widehat{S}_n = \left\{ w \in \widetilde{S}_n \mid \sum_{i=1}^n w(i) i = 0 \right\}$
- Right-hand side

$$\Omega = \left\{ \begin{array}{ccc} \left(\begin{array}{ccc} P & Q \\ \end{array}, & \left[\begin{array}{ccc} Q \end{array}, & \left[\begin{array}{ccc} P \end{array} \right) \end{array} \right) \end{array} \right\}$$

$$W \hookrightarrow \Omega_{dom}$$

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{ w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n \}$
 - Non-extended: $W = \widehat{S}_n = \left\{ w \in \widetilde{S}_n \mid \sum_{i=1}^n w(i) i = 0 \right\}$
- Right-hand side

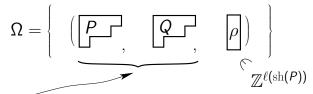
$$\Omega = \left\{ \begin{array}{c|c} \left(\begin{array}{ccc} P & Q \\ \end{array}, & \begin{array}{ccc} \rho \end{array} \right) \end{array} \right\}$$

tabloids of same shape filled

with
$$\overline{1} := 1 + n\mathbb{Z}, \overline{2}, \dots, \overline{n}$$
.

$$W \hookrightarrow \Omega_{dom}$$

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{ w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n \}$
 - Non-extended: $W = \widehat{S}_n = \left\{ w \in \widetilde{S}_n \mid \sum_{i=1}^n w(i) i = 0 \right\}$
- Right-hand side



tabloids of same shape filled

with
$$\overline{1} := 1 + n\mathbb{Z}, \overline{2}, \dots, \overline{n}$$
.

- Left-hand side = affine symmetric group
 - Extended: $W = \widetilde{S}_n = \{ w : \mathbb{Z} \hookrightarrow \mathbb{Z} \mid w(i+n) = w(i) + n \}$
 - Non-extended: $W = \widehat{S}_n = \left\{ w \in \widetilde{S}_n \mid \sum_{i=1}^n w(i) i = 0 \right\}$
- Right-hand side

$$\Omega = \left\{ \begin{array}{c|c} \left(\begin{array}{ccc} P & Q & \rho \end{array} \right) \end{array} \right\}$$

tabloids of same shape filled

with
$$\overline{1} := 1 + n\mathbb{Z}, \overline{2}, \dots, \overline{n}$$
.

Offset dominance: $\forall i, P, Q$ if $\lambda_i = \lambda_{i+1}$ then $\rho_{i+1} \ge \rho_i + (\operatorname{ch}_i(P) - \operatorname{ch}_i(Q))$

Offset dominance: $\forall i, P, Q \text{ if } \lambda_i = \lambda_{i+1} \text{ then } \rho_{i+1} \geqslant \rho_i + (\operatorname{ch}_i(P) - \operatorname{ch}_i(Q))$

3	5	7	3	5	7	3
I	4	б	I	4	б	5
2			2			-7

Offset dominance: $\forall i, P, Q \text{ if } \lambda_i = \lambda_{i+1} \text{ then } \rho_{i+1} \geqslant \rho_i + (\operatorname{ch}_i(P) - \operatorname{ch}_i(Q))$

Theorem (CLP)

If $w \mapsto (P, Q, \rho)$ then $w^{-1} \mapsto (Q, P, \rho')$ and $\rho' =$ dominant representative of $-\rho$.

3	5	7	3	5	7	3
I	4	б	I	4	б	5
2			2			-7

3	5	7	3	5	7	-5
I	4	б	I	4	б	-3
2			2			7

Offset dominance: $\forall i, P, Q \text{ if } \lambda_i = \lambda_{i+1} \text{ then } \rho_{i+1} \geqslant \rho_i + (\operatorname{ch}_i(P) - \operatorname{ch}_i(Q))$

Theorem (CLP)

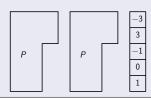
If $w \mapsto (P, Q, \rho)$ then $w^{-1} \mapsto (Q, P, \rho')$ and $\rho' = dominant$ representative of $-\rho$.

3	5	7	3	5	7	Γ
I	4	б	I	4	б	Γ
2			2			[

3	5	7	3	5	7	_í
Ī	4	б	I	4	б	-3
2			2			7

Corollary

Involutions:



Descents:

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Signs:

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Signs: $inv(T) := \{(i,j) \mid i < j \text{ and } j \text{ is higher than } i\}; \quad inv(\lambda) := \sum_{2|i} \lambda_i$

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Signs: $inv(T) := \{(i,j) \mid i < j \text{ and } j \text{ is higher than } i\}; \quad inv(\lambda) := \sum_{2|i} \lambda_i$

Theorem (Reifegerste)

For any permutation w, $sgn(w) = (-1)^{inv(\lambda) + inv(P) + inv(Q)}$.

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Signs: $inv(T) := \{(i,j) \mid i < j \text{ and } j \text{ is higher than } i\}; \quad inv(\lambda) := \sum_{2|i} \lambda_i$

Theorem (Reifegerste)

For any permutation w, $\mathrm{sgn}(w) = (-1)^{\mathrm{inv}(\lambda) + \mathrm{inv}(P) + \mathrm{inv}(Q)}$.

$$\mathsf{inv}(\rho) := \sum_{i: 2 \nmid \lambda_i} \rho_i$$

Descents:

$$R(w) = \{1 < i \leqslant n \mid w(i) > w(i+1)\}; \quad D(T) = \{1 < i \leqslant n \mid \overline{i} \text{ is above } \overline{i+1}\}$$

Theorem (CLP)

For any extended affine permutation w, R(w) = D(Q(w)).

Signs: $inv(T) := \{(i,j) \mid i < j \text{ and } j \text{ is higher than } i\}; \quad inv(\lambda) := \sum_{2|i} \lambda_i$

Theorem (Reifegerste)

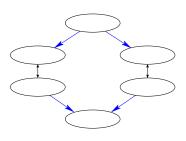
For any permutation w, $\operatorname{sgn}(w) = (-1)^{\operatorname{inv}(\lambda) + \operatorname{inv}(P) + \operatorname{inv}(Q)}$.

$$\operatorname{inv}(\rho) := \sum_{i:2 \nmid \lambda_i} \rho_i$$

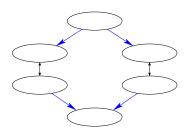
Theorem (CLP)

For any extended affine permutation w, $sgn(w) = (-1)^{inv(\lambda) + inv(P) + inv(Q) + inv(\rho)}$.

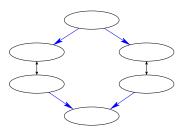
ullet W - Coxeter group, ${\mathcal H}$ - Hecke algebra



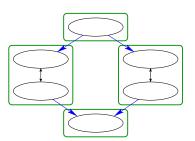
- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$



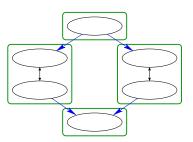
- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$
- Action of generators encoded by a weighted directed graph



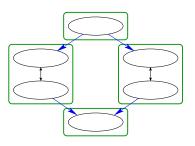
- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$
- Action of generators encoded by a weighted directed graph
- Strongly connected components = "cells"



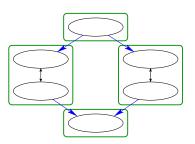
- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$
- Action of generators encoded by a weighted directed graph
- Strongly connected components = "cells"
- In type A (and \widehat{A}), a cell consists of all permutation with a given P

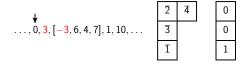


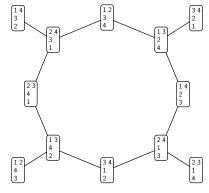
- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$
- Action of generators encoded by a weighted directed graph
- Strongly connected components = "cells"
- In type A (and \widehat{A}), a cell consists of all permutation with a given P
- In type A (and \widehat{A}), bi-directed edges given by Knuth moves

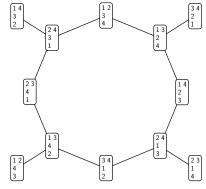


- ullet W Coxeter group, ${\mathcal H}$ Hecke algebra
- Reg. rep. has basis $\{C_w\}_{w \in W}$
- Action of generators encoded by a weighted directed graph
- Strongly connected components = "cells"
- In type A (and \widehat{A}), a cell consists of all permutation with a given P
- In type A (and \widehat{A}), bi-directed edges given by Knuth moves
- In type A, Knuth moves generate cells





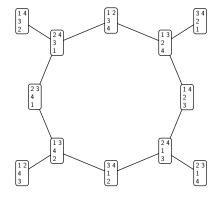




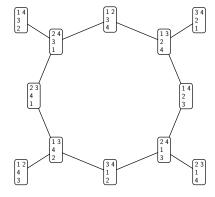
Knuth moves:

$$\begin{array}{c|cccc}
 & & & & 2 & 1 & \\
 & & & & 3 & \\
 & & & & 4 & \\
\end{array}$$

• $w \mapsto Q(W)$ - graph covering

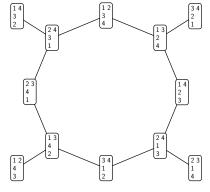


- $w \mapsto Q(W)$ graph covering
- Graph on tabloids may not be connected! (gcd(multiplicities in λ) components)



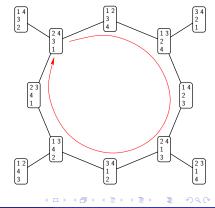
$$\begin{array}{c|ccccc} & & & & & 2 & 1 \\ & & & & & 3 \\ & & & & 4 \\ \end{array}$$

- $w \mapsto Q(W)$ graph covering
- Graph on tabloids may not be connected! (gcd(multiplicities in λ) components)
- Monodromy: how ρ changes over closed loop. Restrictions:
 - $\sum_{i} \rho_{i}$ preserved
 - entries change in blocks



- $w \mapsto Q(W)$ graph covering
- Graph on tabloids may not be connected! (gcd(multiplicities in λ) components)
- Monodromy: how ρ changes over closed loop. Restrictions:
 - $\sum_{i} \rho_{i}$ preserved
 - entries change in blocks
- Example:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$$



Thank you!